Serveur d'exploration Phytophthora

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

High-Throughput Chemical Screening Identifies Compounds that Inhibit Different Stages of the Phytophthora agathidicida and Phytophthora cinnamomi Life Cycles.

Identifieur interne : 000983 ( Main/Exploration ); précédent : 000982; suivant : 000984

High-Throughput Chemical Screening Identifies Compounds that Inhibit Different Stages of the Phytophthora agathidicida and Phytophthora cinnamomi Life Cycles.

Auteurs : Scott A. Lawrence [Nouvelle-Zélande] ; Charlotte B. Armstrong [Nouvelle-Zélande] ; Wayne M. Patrick [Nouvelle-Zélande] ; Monica L. Gerth [Nouvelle-Zélande]

Source :

RBID : pubmed:28769905

Abstract

Oomycetes in the genus Phytophthora are among the most damaging plant pathogens worldwide. Two important species are Phytophthora cinnamomi, which causes root rot in thousands of native and agricultural plants, and Phytophthora agathidicida, which causes kauri dieback disease in New Zealand. As is the case for other Phytophthora species, management options for these two pathogens are limited. Here, we have screened over 100 compounds for their anti-oomycete activity, as a potential first step toward identifying new control strategies. Our screening identified eight compounds that showed activity against both Phytophthora species. These included five antibiotics, two copper compounds and a quaternary ammonium cation. These compounds were tested for their inhibitory action against three stages of the Phytophthora life cycle: mycelial growth, zoospore germination, and zoospore motility. The inhibitory effects of the compounds were broadly similar between the two Phytophthora species, but their effectiveness varied widely among life cycle stages. Mycelial growth was most successfully inhibited by the antibiotics chlortetracycline and paromomycin, and the quaternary ammonium salt benzethonium chloride. Copper chloride and copper sulfate were most effective at inhibiting zoospore germination and motility, whereas the five antibiotics showed relatively poor zoospore inhibition. Benzethonium chloride was identified as a promising antimicrobial, as it is effective across all three life cycle stages. While further testing is required to determine their efficacy and potential phytotoxicity in planta, we have provided new data on those agents that are, and those that are not, effective against P. agathidicida and P. cinnamomi. Additionally, we present here the first published protocol for producing zoospores from P. agathidicida, which will aid in the further study of this emerging pathogen.

DOI: 10.3389/fmicb.2017.01340
PubMed: 28769905
PubMed Central: PMC5515820


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">High-Throughput Chemical Screening Identifies Compounds that Inhibit Different Stages of the
<i>Phytophthora agathidicida</i>
and
<i>Phytophthora cinnamomi</i>
Life Cycles.</title>
<author>
<name sortKey="Lawrence, Scott A" sort="Lawrence, Scott A" uniqKey="Lawrence S" first="Scott A" last="Lawrence">Scott A. Lawrence</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry, University of OtagoDunedin, New Zealand.</nlm:affiliation>
<country xml:lang="fr">Nouvelle-Zélande</country>
<wicri:regionArea>Department of Biochemistry, University of OtagoDunedin</wicri:regionArea>
<wicri:noRegion>University of OtagoDunedin</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Armstrong, Charlotte B" sort="Armstrong, Charlotte B" uniqKey="Armstrong C" first="Charlotte B" last="Armstrong">Charlotte B. Armstrong</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry, University of OtagoDunedin, New Zealand.</nlm:affiliation>
<country xml:lang="fr">Nouvelle-Zélande</country>
<wicri:regionArea>Department of Biochemistry, University of OtagoDunedin</wicri:regionArea>
<wicri:noRegion>University of OtagoDunedin</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Patrick, Wayne M" sort="Patrick, Wayne M" uniqKey="Patrick W" first="Wayne M" last="Patrick">Wayne M. Patrick</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry, University of OtagoDunedin, New Zealand.</nlm:affiliation>
<country xml:lang="fr">Nouvelle-Zélande</country>
<wicri:regionArea>Department of Biochemistry, University of OtagoDunedin</wicri:regionArea>
<wicri:noRegion>University of OtagoDunedin</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gerth, Monica L" sort="Gerth, Monica L" uniqKey="Gerth M" first="Monica L" last="Gerth">Monica L. Gerth</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry, University of OtagoDunedin, New Zealand.</nlm:affiliation>
<country xml:lang="fr">Nouvelle-Zélande</country>
<wicri:regionArea>Department of Biochemistry, University of OtagoDunedin</wicri:regionArea>
<wicri:noRegion>University of OtagoDunedin</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28769905</idno>
<idno type="pmid">28769905</idno>
<idno type="doi">10.3389/fmicb.2017.01340</idno>
<idno type="pmc">PMC5515820</idno>
<idno type="wicri:Area/Main/Corpus">000929</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000929</idno>
<idno type="wicri:Area/Main/Curation">000929</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000929</idno>
<idno type="wicri:Area/Main/Exploration">000929</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">High-Throughput Chemical Screening Identifies Compounds that Inhibit Different Stages of the
<i>Phytophthora agathidicida</i>
and
<i>Phytophthora cinnamomi</i>
Life Cycles.</title>
<author>
<name sortKey="Lawrence, Scott A" sort="Lawrence, Scott A" uniqKey="Lawrence S" first="Scott A" last="Lawrence">Scott A. Lawrence</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry, University of OtagoDunedin, New Zealand.</nlm:affiliation>
<country xml:lang="fr">Nouvelle-Zélande</country>
<wicri:regionArea>Department of Biochemistry, University of OtagoDunedin</wicri:regionArea>
<wicri:noRegion>University of OtagoDunedin</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Armstrong, Charlotte B" sort="Armstrong, Charlotte B" uniqKey="Armstrong C" first="Charlotte B" last="Armstrong">Charlotte B. Armstrong</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry, University of OtagoDunedin, New Zealand.</nlm:affiliation>
<country xml:lang="fr">Nouvelle-Zélande</country>
<wicri:regionArea>Department of Biochemistry, University of OtagoDunedin</wicri:regionArea>
<wicri:noRegion>University of OtagoDunedin</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Patrick, Wayne M" sort="Patrick, Wayne M" uniqKey="Patrick W" first="Wayne M" last="Patrick">Wayne M. Patrick</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry, University of OtagoDunedin, New Zealand.</nlm:affiliation>
<country xml:lang="fr">Nouvelle-Zélande</country>
<wicri:regionArea>Department of Biochemistry, University of OtagoDunedin</wicri:regionArea>
<wicri:noRegion>University of OtagoDunedin</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gerth, Monica L" sort="Gerth, Monica L" uniqKey="Gerth M" first="Monica L" last="Gerth">Monica L. Gerth</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry, University of OtagoDunedin, New Zealand.</nlm:affiliation>
<country xml:lang="fr">Nouvelle-Zélande</country>
<wicri:regionArea>Department of Biochemistry, University of OtagoDunedin</wicri:regionArea>
<wicri:noRegion>University of OtagoDunedin</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in microbiology</title>
<idno type="ISSN">1664-302X</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Oomycetes in the genus
<i>Phytophthora</i>
are among the most damaging plant pathogens worldwide. Two important species are
<i>Phytophthora cinnamomi</i>
, which causes root rot in thousands of native and agricultural plants, and
<i>Phytophthora agathidicida</i>
, which causes kauri dieback disease in New Zealand. As is the case for other
<i>Phytophthora</i>
species, management options for these two pathogens are limited. Here, we have screened over 100 compounds for their anti-oomycete activity, as a potential first step toward identifying new control strategies. Our screening identified eight compounds that showed activity against both
<i>Phytophthora</i>
species. These included five antibiotics, two copper compounds and a quaternary ammonium cation. These compounds were tested for their inhibitory action against three stages of the
<i>Phytophthora</i>
life cycle: mycelial growth, zoospore germination, and zoospore motility. The inhibitory effects of the compounds were broadly similar between the two
<i>Phytophthora</i>
species, but their effectiveness varied widely among life cycle stages. Mycelial growth was most successfully inhibited by the antibiotics chlortetracycline and paromomycin, and the quaternary ammonium salt benzethonium chloride. Copper chloride and copper sulfate were most effective at inhibiting zoospore germination and motility, whereas the five antibiotics showed relatively poor zoospore inhibition. Benzethonium chloride was identified as a promising antimicrobial, as it is effective across all three life cycle stages. While further testing is required to determine their efficacy and potential phytotoxicity
<i>in planta</i>
, we have provided new data on those agents that are, and those that are not, effective against
<i>P. agathidicida</i>
and
<i>P. cinnamomi</i>
. Additionally, we present here the first published protocol for producing zoospores from
<i>P. agathidicida</i>
, which will aid in the further study of this emerging pathogen.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">28769905</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-302X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>8</Volume>
<PubDate>
<Year>2017</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in microbiology</Title>
<ISOAbbreviation>Front Microbiol</ISOAbbreviation>
</Journal>
<ArticleTitle>High-Throughput Chemical Screening Identifies Compounds that Inhibit Different Stages of the
<i>Phytophthora agathidicida</i>
and
<i>Phytophthora cinnamomi</i>
Life Cycles.</ArticleTitle>
<Pagination>
<MedlinePgn>1340</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fmicb.2017.01340</ELocationID>
<Abstract>
<AbstractText>Oomycetes in the genus
<i>Phytophthora</i>
are among the most damaging plant pathogens worldwide. Two important species are
<i>Phytophthora cinnamomi</i>
, which causes root rot in thousands of native and agricultural plants, and
<i>Phytophthora agathidicida</i>
, which causes kauri dieback disease in New Zealand. As is the case for other
<i>Phytophthora</i>
species, management options for these two pathogens are limited. Here, we have screened over 100 compounds for their anti-oomycete activity, as a potential first step toward identifying new control strategies. Our screening identified eight compounds that showed activity against both
<i>Phytophthora</i>
species. These included five antibiotics, two copper compounds and a quaternary ammonium cation. These compounds were tested for their inhibitory action against three stages of the
<i>Phytophthora</i>
life cycle: mycelial growth, zoospore germination, and zoospore motility. The inhibitory effects of the compounds were broadly similar between the two
<i>Phytophthora</i>
species, but their effectiveness varied widely among life cycle stages. Mycelial growth was most successfully inhibited by the antibiotics chlortetracycline and paromomycin, and the quaternary ammonium salt benzethonium chloride. Copper chloride and copper sulfate were most effective at inhibiting zoospore germination and motility, whereas the five antibiotics showed relatively poor zoospore inhibition. Benzethonium chloride was identified as a promising antimicrobial, as it is effective across all three life cycle stages. While further testing is required to determine their efficacy and potential phytotoxicity
<i>in planta</i>
, we have provided new data on those agents that are, and those that are not, effective against
<i>P. agathidicida</i>
and
<i>P. cinnamomi</i>
. Additionally, we present here the first published protocol for producing zoospores from
<i>P. agathidicida</i>
, which will aid in the further study of this emerging pathogen.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Lawrence</LastName>
<ForeName>Scott A</ForeName>
<Initials>SA</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry, University of OtagoDunedin, New Zealand.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Armstrong</LastName>
<ForeName>Charlotte B</ForeName>
<Initials>CB</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry, University of OtagoDunedin, New Zealand.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Patrick</LastName>
<ForeName>Wayne M</ForeName>
<Initials>WM</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry, University of OtagoDunedin, New Zealand.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gerth</LastName>
<ForeName>Monica L</ForeName>
<Initials>ML</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry, University of OtagoDunedin, New Zealand.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>07</Month>
<Day>19</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Microbiol</MedlineTA>
<NlmUniqueID>101548977</NlmUniqueID>
<ISSNLinking>1664-302X</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Agathis australis</Keyword>
<Keyword MajorTopicYN="N">avocado root rot</Keyword>
<Keyword MajorTopicYN="N">high-throughput screening</Keyword>
<Keyword MajorTopicYN="N">kauri dieback</Keyword>
<Keyword MajorTopicYN="N">oomycetes</Keyword>
<Keyword MajorTopicYN="N">phenotype microarray</Keyword>
<Keyword MajorTopicYN="N">zoospore</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>03</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>07</Month>
<Day>03</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>8</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>8</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>8</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28769905</ArticleId>
<ArticleId IdType="doi">10.3389/fmicb.2017.01340</ArticleId>
<ArticleId IdType="pmc">PMC5515820</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Pestic Biochem Physiol. 2014 Jun;112:19-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24974113</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 2008 Apr 9;56(7):2457-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18321047</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2001 Jul;11(7):1246-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11435407</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Toxicol Lett. 2002 Jul 7;133(1):1-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12076506</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Essays Biochem. 2017 Mar 3;61(1):11-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28258226</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2016 Apr 29;7:615</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27199944</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Clin Pathol. 1966 Apr;45(4):493-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5325707</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1987 Aug;84(16):5823-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3475703</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2015 May;16(4):413-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25178392</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Chem. 2015 Jul;7(7):610</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26100812</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Glob Chang Biol. 2017 Apr;23 (4):1661-1674</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27596590</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Rev Environ Contam Toxicol. 2011;213:1-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21541846</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Appl Microbiol. 2005;99(4):836-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16162234</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Can J Microbiol. 1970 Dec;16(12):1227-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4329721</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Microbiol. 1974 Sep;84(1):28-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4436647</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Int. 2010 Jan;36(1):138-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19913914</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2002;40:443-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12147767</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2005 Jan;3(1):47-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15608699</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Nouvelle-Zélande</li>
</country>
</list>
<tree>
<country name="Nouvelle-Zélande">
<noRegion>
<name sortKey="Lawrence, Scott A" sort="Lawrence, Scott A" uniqKey="Lawrence S" first="Scott A" last="Lawrence">Scott A. Lawrence</name>
</noRegion>
<name sortKey="Armstrong, Charlotte B" sort="Armstrong, Charlotte B" uniqKey="Armstrong C" first="Charlotte B" last="Armstrong">Charlotte B. Armstrong</name>
<name sortKey="Gerth, Monica L" sort="Gerth, Monica L" uniqKey="Gerth M" first="Monica L" last="Gerth">Monica L. Gerth</name>
<name sortKey="Patrick, Wayne M" sort="Patrick, Wayne M" uniqKey="Patrick W" first="Wayne M" last="Patrick">Wayne M. Patrick</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhytophthoraV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000983 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000983 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhytophthoraV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:28769905
   |texte=   High-Throughput Chemical Screening Identifies Compounds that Inhibit Different Stages of the Phytophthora agathidicida and Phytophthora cinnamomi Life Cycles.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:28769905" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhytophthoraV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 11:20:57 2020. Site generation: Wed Mar 6 16:48:20 2024